PII: S0960-894X(96)00202-8

NOVEL 2,5-DISUBSTITUTED-1*H*-PYRROLES WITH HIGH AFFINITY FOR THE DOPAMINE D₃ RECEPTOR

David Bolton, Izzy Boyfield, Martyn C. Coldwell, Michael S. Hadley, Maureen A.M. Healy, Christopher N. Johnson, Roger E. Markwell, David J. Nash, Graham J. Riley, Geoffrey Stemp* and Harry J. Wadsworth

SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Ave., Harlow, Essex, CM19 5AW,
UK.

Abstract: A series of 2,5-disubstituted-1H-pyrroles (4-18) has been prepared based on replacement of the amide of sultopride 1 by a pyrrole ring. Subsequent modification of the basic side chain gave compounds with high affinity for the dopamine D_3 receptor. In addition, 12 and 17 were shown to be D_3 antagonists with 30-fold selectivity for the D_3 receptor over the D_2 receptor. Copyright © 1996 Elsevier Science Ltd

Schizophrenia is a devastating psychotic disorder which affects approximately 0.5% of the World's population. The majority of drugs currently used to control the symptoms of the disease have poor side-effect profiles, which in many cases leads to low patient compliance and costly hospitalization. Schizophrenia has been associated with up-regulation of the dopaminergic system and existing drugs are believed to exert at least some of their antipsychotic effects through blockade of D₂-like receptors.¹ Recent advances in the molecular biology of dopamine receptors have allowed these D₂-like receptors to be classified as D₂, D₃ and D₄.²⁻⁴ It has been proposed that some of the side-effects associated with currently available drugs, such as Parkinsonism, tardive dyskinesia and hyperprolactinaemia, result from blockade of D₂ receptors and that compounds with selectivity for D₃ receptors would offer the potential for antipsychotic therapy free of side-effects.³

Following on from the original observation³ that substituted benzamides exhibited high D_3 affinity, we investigated a range of structural modifications of 1. In the course of these investigations we discovered that replacement of the amide of 1 by a pyrrole ring (2; DU 122290)⁵ maintained affinity for the D_3 receptor and introduced modest selectivity over D_2 (see Table 1). This *Letter* describes our initial modifications of the basic side chain of 2, leading to a further improvement in D_3 selectivity.

1 sultopride

2 DU 122290

Compounds 4 - 18 were readily prepared from the known 2-[(5-ethylsulfonyl-2-methoxy)phenyl]-1H-pyrrole 3⁵ either by Mannich reaction with the appropriate amine (method A) or by reaction with the Vilsmeier reagent

derived from the appropriate amide, followed by in situ reduction with NaBH₄ (method B) as shown in Scheme 1. All compounds were then purified and isolated as their hydrochloride salts.

Scheme 1

Reagents: Method A: CH₂O, EtOH, AcOH, R¹R²NH; Method B: POCl₃, O N or O N, then NaBH₄.

The D_3 and D_2 affinities of compounds 1, 2 and 4 - 18 were evaluated using displacement of 125 I-iodosulpride from human D_3 and D_2 receptors, expressed in CHO cells, and results are shown in Table 1.

As noted above, replacement of the amide moiety of 1 by a pyrrole ring 2 maintained high affinity at D_3 receptors and, interestingly, resulted in a 4-fold decrease in affinity at D_2 receptors. Modification of the N-ethylpyrrolidine of 2 to N-ethylpiperidine 4 or azacycloheptane 5 increased affinity slightly at both D_3 and D_2 receptors. Introduction of the more flexible N, N-diethylaminomethyl side-chain 6 reduced both D_3 and D_2 affinity, but maintained D_3 selectivity. Constraining the N, N-diethyl groups of 6 into pyrrolidine 7 or piperidine 8 maintained D_3 affinity. Azacycloheptane 9 gave a slight improvement in D_3 affinity compared to 6. However, replacement of piperidine by morpholine 10 dramatically reduced D_3 and D_2 affinity, presumably due to a reduction in pKa of the basic nitrogen.

The introduction of further conformational restraint into the side-chain via a methyl group α - to the pyrrole ring gave compounds 11 - 13. For the pyrrolidine 11 and piperidine 12, this modification improved D₃ affinity compared to 7 and 8, respectively, with 12 having 30-fold selectivity over the D₂ receptor. Interestingly, further increase in ring size to the azacycloheptane 13 resulted in an increase in D₂ affinity compared to 12.

A more dramatic improvement in D_3 affinity (pKi 9.5) was observed on introduction of an N-benzyl substituent, as in 14, although a similar increase in D_2 affinity resulted in only a 3-fold selectivity. These data suggest the presence of an aromatic binding region in both receptors. A combination of this structural motif with pyrrolidine 7, piperidine 8 and azacycloheptane 9 led us to prepare the 2-phenylazacycloalkanes 14 - 18, where the N-benzyl group was conformationally restricted. Although all of these compounds showed a slight decrease in D_3 affinity compared to 14, the 2-phenylazacycloheptane 17 showed a greater reduction in D_2 affinity to give a compound with a D_3 pKi of 8.9 and 30-fold selectivity. The selectivity of this compound may reflect a more advantageous orientation of the 2-phenyl group for interaction with the D_3 receptor, or may arise from unfavourable steric interactions of the azacycloheptane ring with the D_2 receptor. It is interesting to note that further increase in ring size to the azacyclooctane 18 resulted in a similar loss of both D_3 and D_2 affinity compared to 17.

Table 1. Affinities of 2,5-Disubstituted-1*H*-Pyrroles at Human Cloned D₃ and D₂ Receptors

Compound ^a	EISO ₂	D_3^b	$\mathbf{D_2}^b$	Selectivity
Compound	K	D3-	υ,	Selectivity
1 sultopride	-	8.2	8.2	-
2 DU 122290	N Et	8.3	7.6	5
4	Ž. Ž.	8.7	8.1	4
5	N. Et	8.7	8.1	4
6	NEt ₂	7.4	6.5	8
7	\sim r \bigcirc	7.2	6.6	4
8	\sim	7.6	6.8	6
9	\nearrow N	7.8	6.8	10
10	∕ N_O	6.1	5.5	4
11		7.7	6.4	20
12	Me Ne	8.0	6.5	30
13		7.7	7.1	4
14	N CH ₂ Ph Et Ph	9.5	9.1	3
15	Ph N	9.0	7.8	15
16	\sim	8.9	7.9	10
17	Ph N	8.9	7.4	30
18	~ N	7.7	6.5	15

a All new compounds gave satisfactory analytical and/or mass spectral data. Alfinities are pKi values. All values represent the mean of at least 3 experiments, each within 0.2 of the mean.

1236 D. BOLTON et al.

Studies with 12 and 17 have shown that these compounds are able to antagonise the effects of the D_3 selective agonist quinpirole on acidification changes observed using a microphysiometer.⁷

In conclusion, replacement of the amide of 1 by a pyrrole ring 2, followed by modification of the basic side chain has given 12 and 17 as D_3 antagonists with D_3 affinities of 8.0 and 8.9, respectively, and 30-fold selectivity over the D_2 receptor. As such, these compounds will be useful pharmacological tools for further characterising the role of this receptor in the central nervous system.

Acknowledgement

We thank Stephen Ginn for his enthusiastic technical assistance.

References and Notes

- 1. Seeman, P. Synapse. 1987, 1, 133-152.
- Grandy, D. K.; Marchionni, M. A.; Makam, H.; Stofko, R. E.; Alfano, M.; Frothingham, L.; Fischer, J. B.;
 Burke-Howie, K. J.; Bunzow, J. R.; Server, A. C.; Civelli, O. Proc. Nat. Acad. Sci. 1989, 86, 9762-9766.
- 3. Sokoloff, P.; Giros, B.; Martres, M-P.; Bouthenet, M-L.; Schwartz, J-C. Nature. 1990, 347, 146-151.
- Van Tol, H. H. M.; Bunzow, J. R.; Guan, H-C.; Sunahara, R. K.; Seeman, P.; Niznik, H. B.; Civelli, O. Nature. 1991, 350, 610-614.
- van Wijngaarden, I.; Kruse, C. G.; van Hes, R.; van der Heyden, J. A. M.; Tulp, M. T. M. J. Med. Chem. 1987, 30, 2099-2104.
- 6. ¹H NMR spectra were recorded at 250 MHz in CDCl₃ as solvent. Compound **12**, mpt 125-129 °C; ¹H: δ 1.27 (t, J=7Hz, 3H), 1.40 (m, 1H), 1.79 (d, J=7Hz, 3H), 1.55-1.96 (m, 6H), 2.08 (m, 1H), 2.36 (m, 1H), 2.46-2.80 (m, 2H), 3.17 (q, J=7Hz, 2H), 3.40 (m, 2H), 4.16 (s, 3H), 4.53 (m, 1H), 6.25 (m, 1H), 6.62 (m, 1H), 7.08 d, J=9Hz, 1H), 7.70 (dd, J=9, 1Hz, 1H), 8.12 (d, J=1Hz, 1H), 11.65 (br m, 2H). Compound **17**, mpt 142-144 °C; ¹H (free base): δ 1.19 (t, J=7Hz, 3H), 1.40-1.90 (m, 8H), 2.72 (m, 1H), 2.91 (m, 1H), 3.02 (q, J=7Hz, 2H), 3.43 (d, J=14Hz, 1H), 3.53 (d, J=14Hz, 1H), 3.66 (m, 1H), 4.00 (s, 3H), 5.93 (t, J=3Hz, 1H), 6.52 (m, 1H), 7.01 (d, J=9Hz, 1H), 7.24 (m, 1H), 7.26 (m, 2H), 7.38 (m, 2H), 7.55 (m, 1H), 7.99 (d, J=2Hz, 1H), 9.6 (br s, 1H).
- 7. For details of the microphysiometer method see Boyfield, I., Brown, T.H., Coldwell, M.C., Cooper, D.G., Hadley, M.S., Hagan, J.J., Healy, M.A., Johns, A.J., King, R.J., Middlemiss, D.N., Nash, D.J., Riley, G.J., Scott, E.E., Smith, S.A., and Stemp, G. J. Med. Chem. 1996, in press. In antagonist experiments, compounds 12 and 17 had apparent pKb's at the D₃ receptor of 7.7 and 9.7, respectively.